A Novel Method for Peanut Seed Plumpness Detection in Soft X-ray Images Based on Level Set and Multi-Threshold OTSU Segmentation

Author:

Liu Yuanyuan12ORCID,Qiu Guangjun23ORCID,Wang Ning2ORCID

Affiliation:

1. College of Information and Technology & Smart Agriculture Research Institute, Jilin Agricultural University, Changchun 130118, China

2. Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 75078, USA

3. Institute of Facility Agriculture of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

The accurate assessment of peanut seed plumpness is crucial for optimizing peanut production and quality. The current method is mainly manual and visual inspection, which is very time-consuming and causes seed deterioration. A novel imaging technique is used to enhance the detection of peanut seed fullness using a non-destructive soft X-ray, which is suitable for the analysis of the surface or a thin layer of a material. The overall grayscale of the peanut is similar to the background, and the edge of the peanut seed is blurred. The inaccuracy of peanut overall and peanut seed segmentation leads to low accuracy of seed plumpness detection. To improve accuracy in detecting the fullness of peanut seeds, a seed plumpness detection method based on level set and multi-threshold segmentation was proposed for peanut images. Firstly, the level set algorithm is used to extract the overall contour of peanuts. Secondly, the obtained binary image is processed by morphology to obtain the peanut pods (the peanut overall). Then, the multi-threshold OTSU algorithm is used for threshold segmentation. The threshold is selected to extract the peanut seed part. Finally, morphology is used to complete the cavity to achieve the segmentation of the peanut seed. Compared with optimization algorithms, in the segmentation of the peanut pods, average random index (RI), global consistency error (GCE) and variation of information (VI) were increased by 10.12% and decreased by 0.53% and 24.11%, respectively. Compared with existing algorithms, in the segmentation of the peanut seed, the average RI, VI and GCE were increased by 18.32% and decreased by 9.14% and 6.11%, respectively. The proposed method is stable, accurate and can meet the requirements of peanut image plumpness detection. It provides a feasible technical means and reference for scientific experimental breeding and testing grading service pricing.

Funder

National Natural Science Foundation of China

Jilin Science and Technology Development Program Project

Natural Science Foundation of Guangdong Province

Scientific and Technological Innovation Strategic Program of Guangdong Academy of Agricultural Sciences

Guangzhou Science and Technology Planning Project

Innovation Fund of Guangdong Academy of Agricultural Sciences

Youth Training Program of Guangdong Academy of Agricultural Sciences

USDA-NIFA Hatch Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3