Research on the Population Flow and Mixing Characteristics of Pelleted Vegetable Seeds Based on the Bonded-Particle Model

Author:

Xu Jian1,Sun Shunli2ORCID,Li Xiaoting1,Zeng Zhiheng2,Han Chongyang2,Tang Ting2,Wu Weibin2

Affiliation:

1. National Navel Orange Engineering Research Centre, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China

2. College of Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

In order to precisely reproduce the precise seeding process of the population in the air-suction seed-metering device, it is necessary to execute accurate modeling of seed particles using the bonded-particle model, in combination with the discrete element method (DEM) and computational fluid dynamics (CFD). Through the repose angle, slope screening, rotating container, and particle sedimentation experiments, in this paper, the influence of the filling accuracy of the bonded-particle model on the flow behavior and mixing characteristics of the seed population was first explored based on EDEM software. The viability of the suggested modeling approach for pelleted vegetable seeds, as described in this study, was confirmed by comparing experimental and simulation outcomes. The surface roughness values obtained from the studies above were utilized to assess the accuracy of the bonded-particle model in filling. Additionally, a mathematical technique for determining the surface roughness was provided. Furthermore, an analysis of the multiple contacts in the bonded-particle model was also performed. The results indicated that the simulation results closely matched the experimental data when the number of sub-spheres in the bonded-particle model was equal to or more than 70, as measured by the standard deviation. In addition, the most optimal modeling scheme for the pelletized vegetable seed bonded-particles, based on the cost of coupling simulation, was found to be the bonded-particle surface roughness (BS) with a value of 0.1. Ultimately, a practical example was utilized to demonstrate the utilization of the pelleted vegetable seed bonded-particle model and the DEM-CFD coupling approach in analyzing the accuracy of the seeding process in the air-suction seed-metering device. This example will serve as a valuable reference point for future field studies.

Funder

Key Realm R&D Program of Guangdong Province

Publisher

MDPI AG

Reference33 articles.

1. A discrete numerical model for granular assemblies;Cundall;Géotechnique,1979

2. Numerical simulation of seed motion characteristics of distribution head for rapeseed and wheat;Lei;Comput. Electron. Agric.,2018

3. Numerical analysis of particle motion in pneumatic centralized fertilizer distribution device based on CFD-DEM;Yang;Trans. Chin. Soc. Agric. Mach.,2019

4. An immersed boundary method for complex incompressible flows;Choi;J. Comput. Phys.,2007

5. The immersed boundary method;Peskin;Acta Numer.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3