The Coupling Effects of PGPR Inoculation and Foliar Spraying of Strigolactone in Mitigating the Negative Effect of Salt Stress in Wheat Plants: Insights from Phytochemical, Growth, and Yield Attributes

Author:

Mehrabi Shadi Sadat1,Sabokdast Manijeh1ORCID,Bihamta Mohammad Reza1,Dedičová Beáta2

Affiliation:

1. Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran

2. Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU) Alnarp, Sundsvägen 10, P.O. Box 190, SE-234 22 Lomma, Sweden

Abstract

Salt stress has detrimental effects on wheat plants at several physiological, biochemical, and molecular levels. This stress leads to suppressed growth, reduced grain yield, and poor quality of harvested grains. However, two approaches have shown promise for improving wheat salt tolerance: using a synthetic strigolactone analog called GR24 and applying plant growth-promoting rhizobacteria (PGPR). GR24 plays a vital role in regulating plant growth and development and in defense against various stresses. Conversely, PGPR are beneficial bacteria that colonize the rhizosphere of plants and promote their growth through multiple mechanisms. In our study, we investigated the effects of salinity on the growth and yield traits of two different wheat cultivars and explored the combined role of PGPR and GR24 in mitigating the impact of salt stress. We created three different salinity levels using NaCl in pots (original, 5 dS m−1, and 10 dS m−1) and inoculated wheat seeds with a salt-tolerant Bacillus velezensis UTB96 strain. In addition, we applied 10 μM GR24 via foliar application during the pollination stage. Our observations showed that salt stress negatively affected wheat’s growth, yield, and phytochemical properties compared to the control. However, both single and combined applications of PGPR and GR24 mitigated the adverse effects of salinity. The combined treatment had a more substantial impact than either alone in inducing and improving biochemical and ionic characteristics. These included decreasing Na+ content in both leaves and roots, and EL, H2O2, and MDA content in leaves while increasing K+ content in both leaves and roots, growth and yield-related traits, RWC, chlorophyll pigments, total protein, soluble sugar, starch, proline, GB, and antioxidant enzyme activity (APX, POX, and CAT) of leaves. In conclusion, integrating PGPR and GR24 can efficiently induce salt tolerance and improve plant growth under stressed conditions. This combined approach has the potential for broad applicability in supporting plant growth in the presence of salt stress.

Funder

The College of Agriculture and Natural Resources at Tehran University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3