Identifying an Image-Processing Method for Detection of Bee Mite in Honey Bee Based on Keypoint Analysis

Author:

Lee Hong Gu1,Kim Min-Jee2,Kim Su-bae3,Lee Sujin3,Lee Hoyoung4,Sin Jeong Yong5,Mo Changyeun15ORCID

Affiliation:

1. Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea

2. Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea

3. Apiculture Division, National Institute of Agricultural Science, 310 Nongsaengmyeng-ro, Deokjin-gu, Jeonju 54875, Republic of Korea

4. Department of Mechatronics Engineering, Korea Polytechnics, 56 Munemi-ro 448 beon-gil, Bupyeong-gu, Incheon 21417, Republic of Korea

5. Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

Economic and ecosystem issues associated with beekeeping may stem from bee mites rather than other bee diseases. The honey mites that stick to bees are small and possess a reddish-brown color, rendering it difficult to distinguish them with the naked eye. Objective and rapid technologies to detect bee mites are required. Image processing considerably improves detection performance. Therefore, this study proposes an image-processing method that can increase the detection performance of bee mites. A keypoint detection algorithm was implemented to identify keypoint location and frequencies in images of bees and bee mites. These parameters were analyzed to determine the rational measurement distance and image-processing. The change in the number of keypoints was analyzed by applying five-color model conversion, histogram normalization, and two-histogram equalization. The performance of the keypoints was verified by matching images with infested bees and mites. Among 30 given cases of image processing, the method applying normalization and equalization in the RGB color model image produced consistent quality data and was the most valid keypoint. Optimal image processing worked effectively in the measured 300 mm data in the range 300–1100 mm. The results of this study show that diverse image-processing techniques help to enhance the quality of bee mite detection significantly. This approach can be used in conjunction with an object detection deep-learning algorithm to monitor bee mites and diseases.

Funder

Rural Development Administration as “Cooperative Research Program for Agriculture Science and Technology Development

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3