Straw Return Decomposition Characteristics and Effects on Soil Nutrients and Maize Yield

Author:

Yang Yun12,Long Yun1ORCID,Li Shiwei2,Liu Xiaohong1

Affiliation:

1. College of Life Science, China West Normal University, Nanchong 637009, China

2. Nanchong Academy of Agricultural Sciences, Nanchong 637000, China

Abstract

Straw return benefits soil nutrient circulation and avoids the environmental pollution caused by incineration. The straw return effect is determined by many factors, such as the returning mode and tillage method. To find the most suitable straw return mode in the hilly areas of south China, we conducted experiments with preceding maize straw in Nanchong (Sichuan Province, China) for three years. Five treatments were tested: (A) rotary tillage without straw return (RT), (B) crushed straw return with rotary tillage (CRT), (C) crushed straw return without rotary tillage (CSR), (D) whole straw return with rotary tillage (WRT), and (E) whole straw return without rotary tillage (WSR). The results indicated that CRT had the fastest decomposition rate, followed by CSR. Moreover, CRT had the fastest nutrient release rates for nitrogen, phosphorus, potassium, cellulose, hemicellulose, and lignin, as well as the highest maize yield (6.62% higher than RT). CRT increased the content of organic matter, total nitrogen, total phosphorus, and total potassium in the soil, as well as improved the soil pH. Furthermore, the numbers of bacteria, Actinomycetes, and fungi in the soil under CRT, CSR, and WSR treatments were higher than those under the other two treatments. This study has important reference value for exploring the most favourable straw return method for improving farmland fertility.

Funder

Fundamental Research Funds of China West Normal University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3