Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture

Author:

Miller Tymoteusz12ORCID,Mikiciuk Grzegorz3ORCID,Kisiel Anna12ORCID,Mikiciuk Małgorzata4ORCID,Paliwoda Dominika3ORCID,Sas-Paszt Lidia5ORCID,Cembrowska-Lech Danuta26ORCID,Krzemińska Adrianna2,Kozioł Agnieszka7,Brysiewicz Adam7ORCID

Affiliation:

1. Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland

2. Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland

3. Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland

4. Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin, Poland

5. Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

6. Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland

7. Institute of Technology and Life Sciences–National Research Institute, Falenty, Hrabska Avenue 3, 05-090 Raszyn, Poland

Abstract

Drought conditions pose significant challenges to sustainable agriculture and food security. Identifying microbial strains that can mitigate drought effects is crucial to enhance crop resilience and productivity. This study presents a comprehensive comparison of several machine learning models, including Random Forest, Decision Tree, XGBoost, Support Vector Machine (SVM), and Artificial Neural Network (ANN), to predict optimal microbial strains for this purpose. Models were assessed on multiple metrics, such as accuracy, standard deviation of results, gains, total computation time, and training time per 1000 rows of data. Notably, the Gradient Boosted Trees model outperformed others in accuracy but required extensive computational resources. This underscores the balance between accuracy and computational efficiency in machine learning applications. Leveraging machine learning for selecting microbial strains signifies a leap beyond traditional methods, offering improved efficiency and efficacy. These insights hold profound implications for agriculture, especially concerning drought mitigation, thus furthering the cause of sustainable agriculture and ensuring food security.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference67 articles.

1. Agricultural Drought Monitoring: Progress, Challenges, and Prospects;Liu;J. Geogr. Sci.,2016

2. Verner, D., Treguer, D., Redwood, J., Christensen, J., McDonnell, R., Elbert, C., Konishi, Y., and Belghazi, S. (2022, March 15). Climate Variability, Drought, and Drought Management in Morocco’s Agricultural Sector. Available online: http://hdl.handle.net/10986/30603.

3. Assessment of Agricultural Drought Based on CHIRPS Data and SPI Method over West Papua—Indonesia;Faisol;J. Water Land Dev.,2022

4. A Review on Drought Stress in Plants: Implications, Mitigation and the Role of Plant Growth Promoting Rhizobacteria;Ahluwalia;Resour. Environ. Sustain.,2021

5. Camaille, M., Fabre, N., Clément, C., and Barka, E.A. (2021). Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms, 9.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3