Development and Experimental Validation of an Agricultural Robotic Platform with High Traction and Low Compaction

Author:

Reiser David1ORCID,Sharipov Galibjon M.23,Hubel Gero4,Nannen Volker5ORCID,Griepentrog Hans W.2

Affiliation:

1. Bosch Engineering GmbH, Robert-Bosch-Allee 1, 74232 Abstatt, Germany

2. Institute of Agricultural Engineering, University of Hohenheim, Garbenstr. 9, 70599 Stuttgart, Germany

3. Department of Agricultural Engineering, Geisenheim University, Von-Lade-Str 1, 65366 Geisenheim, Germany

4. VARTA Microbattery GmbH, Varta-Platz 1, 73479 Ellwangen, Germany

5. University of Groningen, 9712 CP Groningen, The Netherlands

Abstract

Some researchers expect that future agriculture will be automated by swarms of small machines. However, small and light robots have some disadvantages. They have problems generating interaction forces high enough to modify the environment (lift a stone, cultivate the soil, or transport high loads). Additionally, they have limited range and terrain mobility. One option to change this paradigm is to use spikes instead of wheels, which enter the soil to create traction. This allows high interaction forces with the soil, and the process is not limited by the weight of the vehicle. We designed a prototype for mechanical soil cultivation and weeding in agricultural fields and evaluated its efficiency. A static and dynamic test was performed to compare the energy input of the electrical motor with precise measurements of the forces on the attached tool. The results indicate that the prototype can create interaction forces of up to 2082 N with a robot weight of 90 kg. A net traction ratio of 2.31 was reached. The dynamic performance experiment generated pull forces of up to 1335 N for a sustained net traction ratio of 1.48. The overall energy efficiency ratio for the machine reached values of up to 0.54 based on the created draft force and the measured input energy consumption.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3