Navigation Line Extraction Method for Broad-Leaved Plants in the Multi-Period Environments of the High-Ridge Cultivation Mode

Author:

Zhou Xiangming1ORCID,Zhang Xiuli1,Zhao Renzhong1,Chen Yong1,Liu Xiaochan1

Affiliation:

1. College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Navigation line extraction is critical for precision agriculture and automatic navigation. A novel method for extracting navigation lines based on machine vision is proposed herein using a straight line detected based on a high-ridge crop row. Aiming at the low-level automation of machines in field environments of a high-ridge cultivation mode for broad-leaved plants, a navigation line extraction method suitable for multiple periods and with high timeliness is designed. The method comprises four sequentially linked phases: image segmentation, feature point extraction, navigation line calculation, and dynamic segmentation horizontal strip number feedback. The a* component of the CIE-Lab colour space is extracted to preliminarily extract the crop row features. The OTSU algorithm is combined with morphological processing to completely separate the crop rows and backgrounds. The crop row feature points are extracted using an improved isometric segmented vertical projection method. While calculating the navigation lines, an adaptive clustering method is used to cluster the adjacent feature points. A dynamic segmentation point clustering method is used to determine the final clustering feature point sets, and the feature point sets are optimised using lateral distance and point line distance methods. In the optimisation process, a linear regression method based on the Huber loss function is used to fit the optimised feature point set to obtain the crop row centreline, and the navigation line is calculated according to the two crop lines. Finally, before entering the next frame processing process, a feedback mechanism to calculate a number of horizontal strips for the next frame is introduced to improve the ability of the algorithm to adapt to multiple periods. The experimental results show that the proposed method can meet the efficiency requirements for visual navigation. The average time for the image processing of four samples is 38.53 ms. Compared with the least squares method, the proposed method can adapt to a longer growth period of crops.

Funder

The National Natural Science Foundation of China

Science and Technological Research Project in Henan Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3