Investigation on Minimum Ventilation, Heating, and Energy Consumption of Pig Buildings in China during Winter

Author:

Qi Fei12ORCID,Li Hao123,Zhao Xuedong12,Huang Jinjun12,Shi Zhengxiang123

Affiliation:

1. College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

3. Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China

Abstract

Ventilation and heating can be necessary for pig production during winter in China. However, it is challenging to balance the ventilation rate and heat loss due to the ventilation. Therefore, it is essential to design the minimum ventilation and heating load properly in order to reduce energy loss. In this paper, a VBA (Visual Basic for Applications) model based on energy balance is established. Meteorological data, pig body masses, outdoor temperatures, feeding densities, and building envelope thermal insulance factors were involved in the model. A model pig house with a length and width of 110 m × 15 m was used to investigate the ventilation, heating time, load, and power consumption in different climate zones, i.e., Changchun, Beijing, Nanning, Wuhan, and Guiyang, representing five major climate regions in China. Based on the simulation results, the models of minimum ventilation and heating load were fitted. The results showed that there is a logarithmic relationship between the minimum ventilation volume and body mass, R2 = 0.9673. The R2 of heating load models for nursery pigs and fattening pigs were 0.966 and 0.963, respectively, considering the feeding area, the outside temperature, the body masses of the nursery and fattening pigs, and the thermal insulance factor of the enclosure. The heating requirements of commercial pig houses within the same building envelope followed the trend in Changchun > Beijing > Guiyang > Wuhan > Nanning. Increasing the building envelope’s thermal insulance factor or using precision heating could reduce the pig house’s power consumption. The analysis of the heating load and energy consumption of winter pig houses in various climate regions provided a reference for precise environmental control and the selection of building thermal insulance factors in China.

Funder

National Natural Science Foundation of China

National Center of Technology Innovation for Pigs

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3