Spatiotemporal Characteristics of Meteorological and Agricultural Droughts in China: Change Patterns and Causes

Author:

Li Lusheng1ORCID,Zhao Lili1,Li Yanbin1

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

Drought is complex and is also one of the main disasters affecting China. Exploring the response of agricultural drought and meteorological drought to climatic factors helps us to understand the causes of drought. In this paper, we evaluated the temporal and spatial characteristics of soil drought and meteorological drought (SMD) and explored their responses to climatic factors and latent heat fluxes (LHF), and then explained their variation from the perspective of atmospheric circulation. The following results were obtained. (1) Meteorological drought has gradually increased in the Liaohe River Basin, on the North China Plain, and on the Loess Plateau while average soil moisture has been maintained at only approximately 25%. The impacts of drought are very serious in these regions. (2) LHF response to short time-scale (3-month scale) drought performance is high in the dry season, and the regions with high correlation coefficients are spatially distributed and concentrated in the monsoon climate zone. The regions with high correlation coefficients between drought and LHFs on long time scales (12-month scale) are concentrated in the coastal basin of southeast China. (3) Short- and long-term SMDs showed highly responsive and significant relationships with PDO, showing variations in the southeast coastal basin, the Pearl River basin, the northwest inland basin and the eastern part of the Heilongjiang basin, with a maximum correlation coefficient of 0.21 (p < 0.01). The short-term SMD in the northwestern inland region was significantly negatively correlated with AMO (correlation coefficient of −0.19, p < 0.01). the Nino3.4 index is significantly positively correlated with the SMD in the southeast coastal region of China, with a maximum correlation coefficient of 0.23 (p < 0.01). The decrease in convective precipitation led to a stronger association between soil and meteorological drought and climatic factors. This study helps to reveal the changing patterns of SMDs and can also be used globally to identify the local development patterns of drought under climate change.

Funder

National Natural Science Foundation of China

Key Technologies R & D and Promotion program of Henan

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference43 articles.

1. Agricultural drought hazard analysis during 1980–2008: A global perspective;Geng;Int. J. Climatol.,2016

2. Crop and pasture response to climate change;Tubiello;Proc. Natl. Acad. Sci. USA,2007

3. Mannocchi, F., Todisco, F., and Vergni, L. (2004). Agricultural Drought: Indices, Definition and Analysis, International Association of Hydrological Sciences.

4. Climate-catchment-soil control on hydrological droughts in peninsular India;Ganguli;Sci. Rep.,2022

5. Investigating soil moisture–climate interactions in a changing climate: A review;Seneviratne;Earth-Sci. Rev.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3