Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control

Author:

Segers Arnaud1ORCID,Carpentier Joachim1,Francis Frédéric1ORCID,Caparros Megido Rudy1

Affiliation:

1. Functionnal and Evolutionnary Entomology, University of Liège–Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium

Abstract

Bruchids are the most important pests of leguminous seeds in the world. In this study, the focus was done on Callosobruchus maculatus, a serious pest of Vigna unguiculata seeds. As no efficient control methods preventing collateral effects on beneficials currently exist, this study investigated whether RNA interference (RNAi) could provide a new biotechnological and selective tool for bruchids control. Three principal objectives were followed including (i) the identification of all RNAi machinery core components and a key protein to silence in C. maculatus genome (c.f., dicer-2, argonaute-2, R2D2, and laccase 1), (ii) the identification of suitable reference gene for RT-qPCR analyses, and (iii) the micro-injection of dsRNA coding for laccase 1 to adults of C. maculatus to assess gene expression levels by RT-qPCR and potentially related mortalities. Phylogenetical analyses performed from transcriptomic information successfully identified all necessary proteins in the RNAi mechanism and also the open reading frame of laccase 1 in C. maculatus. A new reference gene was identified (i.e., alpha-tubuline 1) and coupled with glutiathone S transferase for RT-qPCR analyses. Double-stranded RNAs coding for laccase 1 and green fluorescent protein (control) were produced and 400 ng of each dsRNA were micro-injected into C. maculatus adults. RT-qPCR analyses revealed a stable significant decrease in laccase 1 expression in about 80% of adults treated with laccase 1 dsRNA after three days post-injection. No significant mortalities were observed which is probably related to the non-exposure of adults to anti-nutritional factors that are usually regulated by laccase. Further research should focus either on the feeding larval stage which is directly exposed to anti-nutritional factors, or on other target genes to induce dead phenotypes. This study is the first gene silencing report on a bruchid species and supports RNAi as a potential future method of control.

Funder

Service Public de Wallonie Agriculture

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference83 articles.

1. Kingsolver, J.M. (2004). Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera), U.S. Department of Agriculture, Agricultural Research Service.

2. Overview of Bruchus rufimanus Boheman 1833 (Coleoptera: Chrysomelidae): Biology, chemical ecology and semiochemical opportunities in integrated pest management programs;Segers;Crop Prot.,2021

3. Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: Molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae);Kergoat;Mol. Phylogenet Evol.,2007

4. Caswell, G.H. (1977). The Development and Extension of Nonchemical Control Techniques for Stored Cowpea in Nigeria, Institute for Agricultural Research, Samaru, Ahmadu Bello University.

5. Food consumption by larvae of three strains of Callosobruchus maculatus (Coleoptera: Bruchidae);Credland;J. Stored Prod. Res.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3