Comparing Simulated Jujube Evapotranspiration from P–T, Dual Kc, and S–W Models against Measurements Using a Large Weighing Lysimeter under Drip Irrigation in an Arid Area

Author:

Ai Pengrui1,Ma Yingjie1,Hai Ying1

Affiliation:

1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

Accurate prediction of orchard evapotranspiration (ET) can optimize orchard water management. Based on the jujube (Zizyphus jujuba), ET was continuously measured from 2016 to 2019 using a large weighing lysimeter; the actual jujube ET was compared with the ET simulated with the Priestley–Taylor (P–T), Dual Crop Coefficient (Dual Kc), and Shuttleworth–Wallace (S–W) models, to verify the accuracy of the three models. The results showed that, from 2016 to 2019, the whole growth period of jujube ET was 532–592 mm and the crop coefficient was 0.85–0.93. The basal crop coefficients of the calibrated Dual Kc model were 0.4, 1.0, and 0.5 at the initial, middle, and ending growth stages, respectively. The overall simulation error of the Dual Kc model was low, and simulations were stable during the four years of the study. However, because of rough estimation the water stress coefficient (Ks) simulation accuracy will be reduced in the case of serious water shortage. The simulation error of the S–W model was greater than the simulation error of the Dual Kc model, and the simulations were unstable and vulnerable to interannual changes. The simulation error of the traditional P–T model was large. When the parameter “α” solution method was improved, the simulation accuracy was significantly improved, and the P–T model’s simulation accuracy was only slightly lower than that of the Dual Kc model. However, the model was easily affected by changes in net radiation and air temperature. Therefore, the Dual Kc model is recommended for estimating the ET of young jujube trees in arid areas.

Funder

The Central Guidance on Local Science and Technology Development Fund

National Natural Science Foundation of China

Fund of Academician Mingjiang Deng Workstation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference60 articles.

1. SBX (2020). Xinjiang Statistical Yearbook in 2019, China Statistical Publishing House.

2. Role of deficit irrigation strategies on ET partition and crop water productivity of rice in semi-arid tropics of south India;Anupoju;Irrig. Sci.,2020

3. Growth-stage-specific crop coefficient and consumptive use of Capsicum chinense using hydraulic weighing lysimeter;Raphael;Agric. Water Manag.,2018

4. Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters;Miranda;Sci. Hortic.,2018

5. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). FAO Irrigation and Drainage Paper 56, FAO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3