Numerical Simulation and Experiment of Dust Suppression Device of Peanut Whole-Feed Combine Using Computational Fluid Dynamics

Author:

Xu Hongbo12ORCID,Zhang Peng2ORCID,Gu Fengwei2,Hu Zhichao2,Yang Hongguang2,Mao Enrong1,Du Yuefeng1

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

Abstract

Peanut whole-feed combines discharge a large amount of dust while harvesting, causing serious air pollution and detrimental environmental change. To reduce the dust emission from peanut whole-feed combines, a cyclone separation dust suppression device for peanut whole-feed combines was proposed in this study. A three-dimensional computational fluid dynamics (CFD) model coupled with dust particles and dust emission airflow was established to simulate the effect of a dust suppression device on capturing dust particles. Then, the effectiveness of the dust suppression device was verified by a dust suppression test system on a peanut whole-feed combine. The results show that when the inlet wind velocity of the dust suppression device increased from 15 m/s to 25 m/s, the separation efficiency of the measured value fluctuated between 90.79% and 96.07%, while the simulated value fluctuated between 95.18% and 96.59%. Moreover, the particle size of the discharged dust particles was significantly reduced under the action of the dust suppression device. The discharged dust particle size constant of the measured value was 8.6 μm, while the simulated value was 5.1 μm. The study methods and results can provide a reference for the dust suppression optimization of peanut whole-feed combines and similar agricultural machines.

Funder

China Postdoctoral Science Foundation

Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3