Optimal and Robustly Optimal Consumption of Stretch Film Used for Wrapping Cylindrical Baled Silage

Author:

Stankiewicz AnnaORCID

Abstract

A conventional method for wrapping round bales of agricultural materials by wrappers with a rotating table or with rotating arms is considered. In contemporary agriculture, the demand for minimal consumption of the film used to wrap bales is very high, in order to apply this method with lower cost and less damage to the environment. A combined model-based problem of such a design, focusing on the width of stretch film and the overlap between adjacent film strips that minimizes film consumption, was mathematically formulated and solved. It was proven that the complete set of optimal film widths is defined by a simple algebraic equation described in terms of film, bale, and wrapping parameters. The optimal overlap ratios were found to be irreducible fractions in which the dividend is the divisor minus one; however, only the first three factions, 1 2 , 2 3 ,   and   3 4 , are practically significant. Next, the robustness to disturbances in the functioning of an actual bale wrapper, which leads to overlap ratio uncertainty, is examined. It was shown that, unfortunately, the optimal film widths applied together with the optimal overlaps do not provide any robustness to overlap variations. To overcome this inconvenience, the problems of a choice of the best commercially available film width guaranteeing minimal film consumption or maximal tolerance on the overlap uncertainty were formulated and solved. A new algorithm for a robust design of wrapping parameters was developed, motivated, and numerically verified to achieve a trade-off between satisfactory robustness and low film usage. For the resulting wrapping parameters, near-optimal film usage was achieved; the relative errors of the minimal film consumption approximation did not exceed 4%. It was proven that for the overlap, slightly more than 50%, i.e., 51% or 52%, provides both optimality and robustness of the overlap over disturbances, which are ensured regardless of the number of film layers. Moreover, it was found that for these overlaps and for the commercially available film widths selected according to the algorithm, the film consumption was more than twice as small than the film usage for exactly 50% overlap, if the actual overlap was smaller than pre-assumed. Similarly, an overlap of slightly more than the commonly used 67% will result in about 30% to 40% reduction in film usage in the presence of unfavorable disturbances, depending on the number of film layers and wrapping parameters.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference31 articles.

1. Effect of storing total mixed rations anaerobically in bales on feed quality

2. Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness

3. Mechanized Agriculture: Machine Adoption, Farm Size, and Labor Displacement;Schmitz;AgBioForum,2015

4. Silage Science and Technology;Buxton,2003

5. Environmental assessment of an innovative agricultural machinery;Bortolini;Int. J. Oper. Quant. Manag.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3