Short-Term Response of Soil Microbial Community to Field Conversion from Dryland to Paddy under the Land Consolidation Process in North China

Author:

Li ,Ma ,Yang ,Hou ,Liu ,Chen

Abstract

Land consolidation of dryland-to-paddy conversion for improving tillage conditions and grain production capacity is widely implemented throughout the world. The conversion affects soil ecological stability, especially the most active soil microorganisms. However, the impacts of the dryland-to-paddy conversion has paid little attention in recent decades. In this study, a pot experiment was used to explore the responses of the microbial community and their interactions with soil properties after rice in the first season (five months). The results indicated that a significant decrease in the topsoil pH, organic matter content, nitrate nitrogen, and ammonical nitrogen, and an increase in soil electrical conductivity (EC) was observed (p < 0.05) after the dryland-to-paddy conversion. The richness and diversity of bacteria and fungi decreased in the short term. The composition of the soil microbial community and the soil microbial dominant bacteria had considerably changed after the conversion. Actinobacteria, Firmicutes, and Olpidiomycota were found to be highly sensitive to the dryland-to-paddy conversion. The soil microbial community structure had extremely significant positive correlations with soil pH, EC, organic matter, nitrate nitrogen, and ammonical nitrogen (p < 0.05). Microorganisms are the most important component of soil nutrient cycling. Converting a large area of dryland to paddy may lead to an imbalance in the soil carbonitride cycle and should be further examined in North China.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3