Response of Spring Wheat (Triticum aestivum) to Deficit Irrigation Management under the Semi-Arid Environment of Egypt: Field and Modeling Study

Author:

Ouda SamihaORCID,Noreldin Tahany,Alarcón Juan José,Ragab Ragab,Caruso Gianluca,Sekara AgnieszkaORCID,Abdelhamid Magdi T.ORCID

Abstract

In many areas of the world, water shortages prevail and threaten food production. Deficit irrigation was commonly investigated in dry areas as a precious and sustainable production approach. Using the CropSyst model to simulate the effects of different deficit irrigation treatments could help draw conclusions and save time, effort, and money. Therefore, the aims of this research were (i) to calibrate and validate the CropSyst model for wheat under different sustained and phenological stage-based deficit irrigation treatments, (ii) to simulate the impacts of the latter treatments on limiting wheat yield reduction. Two field experiments were conducted in Nubaria (Egypt), representing an arid environment. They included seven irrigation treatments: (1) 100%, (2) 75%, or (3) 50% of crop evapotranspiration (ETc) during the whole crop cycle; (4) 50% ETc at tillering only, or (5) at booting only, or (6) at grain filling only, or (7) at both tillering and grain filling, with the replenishment of 100% ETc to the treatments (4) to (7) in the remaining phenological stages. The results revealed that phenological stage-based deficit irrigation of wheat resulted in lower yield reduction compared to sustained deficit irrigation treatments, with a 6% yield reduction when 50% ETc was applied at the booting stage. Wheat yield loss was reduced to 4 or 6% when 95 or 90% of ETc were applied, respectively. The CropSyst model accurately simulated wheat grain and total dry matter under deficit irrigation with low RMSE value. In conclusion, the CropSyst model can be reliably used for evaluating the strategy of planned deficit irrigation management in terms of wheat production under the arid environment.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3