Effects of Different Storage Conditions on the Browning Degree, PPO Activity, and Content of Chemical Components in Fresh Lilium Bulbs (Liliumbrownii F.E.Brown var. viridulum Baker.)

Author:

Zhao Kanghong,Xiao Zhengpeng,Zeng Jianguo,Xie Hongqi

Abstract

Although Lilium brownii (L. brownii) bulbs are popular fresh vegetables, a series of quality problems still remain after harvest. In this study, fresh L. brownii bulbs were placed in the dark at 25, 4, and −20 °C and under light at 25 °C from 0 to 30 days; the chemical compositions were analyzed by ultraviolet spectrophotometry (UV) and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). During the 30-day storage period, the browning degree increased over the storage time and with increasing temperature, but the contents of proteins and free amino acids decreased and were aggravated by light. The total polyphenol content increased until the 6th day at 25 °C (dark or light), but it did not significantly accumulate at −20 or 4 °C. The reducing sugar content showed a dynamic balance, but the total polysaccharide content decreased constantly in the four storage conditions. The polyphenol oxidase (PPO) activity increased with storage time and increasing temperature, while it was inhibited by light. The increase rates of malondialdehyde (MDA) content at −20 °C and light (25 °C) were higher than those at 4 and 25 °C. In addition, 12 secondary metabolites were identified, most of which accumulated during the storage period, for example, 1-O-feruloyl-3-O-β-D-glucopyranosylglycerol; 1,3-O-di-p-coumaroylglycerol; 1-O-feruloyl-3-O-p-coumaroylglycerol; and 1,2-O-diferuloylglycerol. The variations in nutrient levels had a low correlation with browning, but the variations in MDA, PPO, and secondary metabolite (phenolic acids) levels had a high correlation with browning. In conclusion, fresh L. brownii bulbs should be stored at a low temperature (4 °C) and in dark condition, and browning bulbs are excellent materials for secondary metabolite utilization.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3