Abstract
A biological control agent is arguably an ideal alternative to chemical fungicide for the prevention and control of gray mold disease. During this process, a biological control produces low levels of pollution, generates few residues that pose no risk to the environment, and pathogens cannot gain resistance to it easily. A new antifungal strain isolated from plant rhizosphere exhibited high antifungal activity against the phytopathogens Botrytis cinerea, Fusarium oxysporum f. sp. cucumerinum, F. moniliforme, Sclerotinia sclerotiorum, Colletotrichum orbiculare, Alternaria nees, F. equiseti, and F. oxysporum f. sp. lycopersici. It was identified as Bacillus velezensis WZ-37 by morphological and physiological indices and comparisons of 16S rRNA and gyrB genes. WZ-37 can significantly inhibit the mycelia growth of B. cinerea by 96.97%. It can reduce a tomato fruit’s decay rate after 21 days of storage by 33.33% (13.34% less for the control) without significantly affecting its firmness and soluble solids. Plant height, stem diameter, and the fresh and dry weight of tomato seedlings were significantly increased when their seeds were soaked in a WZ-37 suspension (106 cfu/mL) for 3 h and grown for 21 days in soil. WZ-37 has broad-spectrum biocontrol and can prolong a tomato’s storage period and enhance its seedlings’ growth, making it a promising candidate strain for broad-spectrum biocontrol applications in agriculture.
Funder
National Natural Science Foundation of Heilongjiang Province
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献