Water Use Efficiency, Spectral Phenotyping and Protein Composition of Two Chickpea Genotypes Grown in Mediterranean Environments under Different Water and Nitrogen Supply

Author:

De Santis Michele AndreaORCID,Satriani AntonioORCID,De Santis Fortunato,Flagella Zina

Abstract

Chickpea is a drought-tolerant crop and an important source of protein, relevant to its beneficial effects. The aim of this study was to assess the response to agronomic management, including water and nitrogen supply, of crop physiological and agronomic traits in relation to water use efficiency and grain protein composition. Two varieties, Pascià and Sultano, were grown at two different sites in South Italy under rainfed and irrigated conditions, with and without starter nitrogen fertilization. Crop physiological assessment was carried out by hyperspectral phenotyping at flowering and during grain filling. Increases in grain yield and grain size in relation to water supply were observed for water use up to about 400 mm. Water use efficiency increased under starter nitrogen fertilization, and Pascià showed the highest values (4.8 kg mm−1). The highest correlations of the vegetation indexes with the agronomic traits were observed in the later growth stage, especially for the optimized soil-adjusted vegetation index (OSAVI); furthermore, grain filling rate showed a strong relationship with photochemical reflectance index (PRI). Experimental factors mainly influenced protein composition rather than protein content. In particular, the 7s vicilin protein fraction showed a negative correlation with grain yield and water use, while lectin showed an opposite response. Both fractions are of interest for consumer’s health because of their allergenic and antinutritional properties, respectively. Data from spectral phenotyping will be useful for digital farming applications, in order to assess crop physiological status in modern agricultural systems.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3