A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery

Author:

Saadat Mohammad,Seydi Seyd TeymoorORCID,Hasanlou MahdiORCID,Homayouni SaeidORCID

Abstract

Rice is one of the most essential and strategic food sources globally. Accordingly, policymakers and planners often consider a special place in the agricultural economy and economic development for this essential commodity. Typically, a sample survey is carried out through field observations and farmers’ consultations to estimate annual rice yield. Studies show that these methods lead to many errors and are time-consuming and costly. Satellite remote sensing imagery is widely used in agriculture to provide timely, high-resolution data and analytical capabilities. Earth observations with high spatial and temporal resolution have provided an excellent opportunity for monitoring and mapping crop fields. This study used the time series of dual-pol synthetic aperture radar (SAR) images of Sentinel-1 and multispectral Sentinel-2 images from Sentinel-1 and Sentinel-2 ESA’s Copernicus program to extract rice cultivation areas in Mazandaran province in Iran. A novel multi-channel streams deep feature extraction method was proposed to simultaneously take advantage of SAR and optical imagery. The proposed framework extracts deep features from the time series of NDVI and original SAR images by first and second streams. In contrast, the third stream integrates them into multi-levels (shallow to deep high-level features); it extracts deep features from the channel attention module (CAM), and group dilated convolution. The efficiency of the proposed method was assessed on approximately 129,000 in-situ samples and compared to other state-of-the-art methods. The results showed that combining NDVI time series and SAR data can significantly improve rice-type mapping. Moreover, the proposed methods had high efficiency compared with other methods, with more than 97% overall accuracy. The performance of rice-type mapping based on only time-series SAR images was better than only time-series NDVI datasets. Moreover, the classification performance of the proposed framework in mapping the Shirodi rice type was better than that of the Tarom type.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3