Evaluation and Analysis on the Temperature Prediction Model for Bailing Mushroom in Jizhou, Tianjin

Author:

Liu RuolanORCID,Yuan Shujie,Han Lin

Abstract

Based on the air temperature, wind speed, humidity, air pressure, etc., of the regional automatic weather station in Chutouling Town, Jizhou from April 2019 to November 2020, and the air temperature of the microclimate observation station receiving data every 10 min in a bailing mushroom greenhouse, this paper analyzed and evaluated a BP (back propagation) neural network and stepwise regression method to establish a prediction model for the temperature in the Bailing mushroom greenhouse for different seasons. The results showed that: (1) The air temperature, wind speed, humidity and air pressure outside the shed were the main factors for building the temperature prediction model for the inside temperature, and the air temperature was the most important factor affecting the temperature inside the shed. After introducing humidity, wind speed and air pressure, the accuracy of the model was significantly improved. (2) The temperature prediction model based on the BP neural network method, for every 10 min interval in the greenhouse, for the Bailing mushroom in different seasons, was more accurate than the stepwise regression model. The simulation results of the two models had the highest accuracy in summer, followed by autumn. (3) The root means square error of the BP neural network and stepwise regression model for inside the greenhouse, simulating the daily temperature variations for different seasons, was 1.25, 1.10, 1.08, 1.31 °C and 1.29, 1.19, 1.11, 1.37 °C, respectively. The BP neural network method performed better for predicting the daily temperature variations in seasons. (4) The specifying data of high temperature (24 July 2020) and strong cold wave (31 December 2019) were selected to test the two model methods; the results showed that the simulation of the BP neural network model was better than the stepwise regression model.

Funder

Natural Science Foundation of Sichuan Province

Arid Meteorology Fund

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference30 articles.

1. Research Advances in Cultivation of Pleurotus nebrodensis;Xu;J. Anhui Agric. Sci.,2007

2. Optimization of growth conditions of wild Pleurotus nerbrodensis mycelium by response surface methodology;Xu;Jiangsu Agric. Sci.,2020

3. Microclimate Environment Test for Wide-span Plastic Greenhouse with External Thermal Insulation;Dong;Chin. J. Agrometeorol.,2020

4. Effects of Temperature and pH Value on the Growth of Pleurotus nebrodensis Hypha;Yao;J. Anhui Agric. Sci.,2008

5. Predicting Temperatures in Ventilated Greenhouses;Walker;Trans. ASAE,1965

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3