Overexpression of GmRIQ2-like (Glyma.04G174400) Enhances the Tolerance of Strong Light Stress and Reduces Photoinhibition in Soybean (Glycine max (L.) Merr.)

Author:

Deng Jing,Li Dongmei,Yin Huayi,Ma Li,Zhang Jiukun,Zhang Binbin

Abstract

Soybean (Glycine max (L.) Merr.) is an important crop that serves as a source of edible oil and protein. However, little is known about its molecular mechanism of adaptation to extreme environmental conditions. Based on the Arabidopsis thaliana sequence database and Phytozome, a soybean gene that had a highly similar sequence to the reduced induction of the non-photochemical quenching2 (AtRIQ2) gene, GmRIQ2-like (accession NO.: Glyma.04G174400), was identified in this study. The gene structure analysis revealed that GmRIQ2-like encoded a transmembrane protein. Elements of the promoter analysis indicated that GmRIQ2-like participated in the photosynthesis and abiotic stress pathways. The subcellular localization results revealed that the protein encoded by GmRIQ2-like was located in chloroplasts. The quantitative real-time (qRT)-PCR results revealed that GmRIQ2-like-overexpression (OE) and -knock-out (KO) transgenic soybean seedlings were cultivated successfully. The relative chlorophyll (Chl) and zeaxanthin contents and Chl fluorescence kinetic parameters demonstrated that GmRIQ2-like dissipated excess light energy by enhancing the non-photochemical quenching (NPQ) and reduced plant photoinhibition. These results suggested that GmRIQ2-like was induced in response to strong light and depressed Chl production involved in soybean stress tolerance. These findings indicate that the transgenic seedlings of GmRIQ2-like could be used to enhance strong light stress tolerance and protect soybean plants from photoinhibition damage. This study will serve as a reference for studying crop photoprotection regulation mechanisms and benefits the research and development of new cultivars.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference84 articles.

1. Effects of temperature stress on chlorophyll fluorescence parameters of strawberry;Duan;Chin. J. Spectrosc. Lab.,2011

2. A Preliminary Study on the Characteristics of NPQ and ETR at the Seedling Stage of Phyllostachys Pubescens;Zheng;World Newsl.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3