Prediction of Soil Oxalate Phosphorus using Visible and Near-Infrared Spectroscopy in Natural and Cultivated System Soils of Madagascar

Author:

Rakotonindrina Hobimiarantsoa,Kawamura KensukeORCID,Tsujimoto YasuhiroORCID,Nishigaki Tomohiro,Razakamanarivo Herintsitohaina,Andrianary Bruce Haja,Andriamananjara AndryORCID

Abstract

Phosphorus is among the main limiting nutrients for plant growth and productivity in both agricultural and natural ecosystems in the tropics, which are characterized by weathered soil. Soil bioavailable P measurement is necessary to predict the potential growth of plant biomass in these ecosystems. Visible and near-infrared reflectance spectroscopy (Vis-NIRS) is widely used to predict soil chemical and biological parameters as an alternative to time-consuming conventional laboratory analyses. However, quantitative spectroscopic prediction of soil P remains a challenge owing to the difficulty of direct detection of orthophosphate. This study tested the performance of Vis-NIRS with partial least square regression to predict oxalate-extractable P (Pox) content, representing available P for plants in natural (forest and non-forest including fallows and degraded land) and cultivated (upland and flooded rice fields) soils in Madagascar. Model predictive accuracy was assessed based on the coefficient of determination (R2), the root mean squared error of cross-validation (RMSECV), and the residual predictive deviation (RPD). The results demonstrated successful Pox prediction accuracy in natural (n = 74, R² = 0.90, RMSECV = 2.39, and RPD = 3.22), and cultivated systems (n = 142, R² = 0.90, RMSECV = 48.57, and RPD = 3.15) and moderate usefulness at the regional scale incorporating both system types (R² = 0.70, RMSECV = 71.87 and RPD = 1.81). These results were also confirmed with modified bootstrap procedures (N = 10,000 times) using selected wavebands on iterative stepwise elimination–partial least square (ISE–PLS) models. The wavebands relevant to soil organic matter content and Fe content were identified as important components for the prediction of soil Pox. This predictive accuracy for the cultivated system was related to the variability of some samples with high Pox values. However, the use of “pseudo-independent” validation can overestimate the prediction accuracy when applied at site scale suggesting the use of larger and dispersed geographical cover sample sets to build a robust model. Our study offers new opportunities for P quantification in a wide range of ecosystems in the tropics.

Funder

Science and Technology Research Partnership for Sustainable Development

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3