Effects of Foliar Spraying of Organic Selenium and Nano-Selenium Fertilizer on Pak Choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under Low Temperature Stress

Author:

Wang Yanyan1,Tan Guozhang1,Chen Jiao1,Wu Jianfu1,Liu Shiyu1,He Xiaowu1ORCID

Affiliation:

1. School of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

The effects of foliar spraying of organic selenium and nano-selenium fertilizer on pak choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under low temperature were investigated. The impacts on plant growth, antioxidant capacities, and nutritional profiles were studied. Exogenous selenium was applied at three rates: 5, 10, 20 mg L−1, and RNA-Seq technology was used to sequence the transcriptome of leaves. The study revealed that selenium influenced leaf weight and total selenium content through three main mechanisms. First, it protected photosynthetic pigments and boosted photosynthetic capacity by up-regulating LHca2, LHcb1, LHca1, and LHcb4. Second, it enhanced antioxidant capacity by elevating the expression of genes such as superoxide dismutase and monodehydroascorbic acid. Third, it facilitated selenium absorption through endocytosis, transported selenium using the ABC transport gene family, and regulated selenium metabolism-related genes like cysteine synthetase and glutaredoxin. Nine hub genes identified with a weighted gene co-expression network analysis were closely associated with these mechanisms. The results of a functional enrichment analysis were consistent with those of a Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis conducted on DEGs, thus confirming the reliability of these findings. Therefore, this study can provide scientific basis for pak choi production with selenium fortification by selenium application.

Funder

Fund project of the Natural Science Foundation of Jiangxi Province

Key R&D Project in Jiangxi Province

Jiangxi Province higher education reform research project

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3