Non-Destructive Detection of Water Content in Pork Based on NIR Spatially Resolved Spectroscopy

Author:

Zhang Zhiyong1,Wang Shuo1,Zhang Yanqing1

Affiliation:

1. College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

Water is one of the important factors affecting pork quality. In this study, near-infrared (NIR) spatially resolved (SR) spectroscopy was used to detect the water content of pork. The SR spectra of 150 pork samples were collected within the light source–detector (LS-D) distance range of 4–20 mm (distance interval 1 mm). Models were established based on single-point SR spectra of 17 different LS-D distances and combination SR spectra. The results indicated that combination SR spectra achieved better model performance than the single-point SR spectra, and the LS-D distance significantly affected the model accuracy. The optimal LS-D distance combination of 5, 7, 10, and 12 mm provided the best detection model with the calibration determination coefficient (R2C) of 0.915 and prediction determination coefficient (R2P) of 0.878. Using the competitive adaptive reweighted sampling (CARS) algorithm, 24 characteristic wavelengths were selected. The model built with the characteristic wavelengths also exhibited good detection accuracy, with a R2C of 0.909 and a R2P of 0.867, and the number of wavelengths was greatly reduced compared to the full-wavelength model. This study demonstrated that SR spectroscopy combined with the optimized LS-D distances and screened characteristic wavelengths can be a powerful tool for detecting the water content of pork.

Funder

Applied Basic Research Program of Shanxi Province, China

Key Research and Development Program of Shanxi Province, China

Science and Technology Innovation Fund of Shanxi Agricultural University, China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3