Sichuan Pepper Recognition in Complex Environments: A Comparison Study of Traditional Segmentation versus Deep Learning Methods

Author:

Lu Jinzhu,Xiang Juncheng,Liu Ting,Gao ZongmeiORCID,Liao Min

Abstract

At present, picking Sichuan pepper is mainly undertaken by people, which is inefficient and presents the possibility of workers getting hurt. It is necessary to develop an intelligent robot for picking Sichuan peppers in which the key technology is accurate segmentation by means of mechanical vision. In this study, we first took images of Sichuan peppers (Hanyuan variety) in an orchard under various conditions of light intensity, cluster numbers, and image occlusion by other elements such as leaves. Under these various image conditions, we compared the ability of different technologies to segment the images, examining both traditional image segmentation methods (RGB color space, HSV color space, k-means clustering algorithm) and deep learning algorithms (U-Net convolutional network, Pyramid Scene Parsing Network, DeeplabV3+ convolutional network). After the images had been segmented, we compared the effectiveness of each algorithm at identifying Sichuan peppers in the various types of image, using the Intersection Over Union(IOU) and Mean Pixel Accuracy(MPA) indexes to measure success. The results showed that the U-Net algorithm was the most effective in the case of single front-lit clusters light without occlusion, with an IOU of 87.23% and an MPA of 95.95%. In multiple front-lit clusters without occlusion, its IOU was 76.52% and its MPA was 94.33%. Based on these results, we propose applicable segmentation methods for an intelligent Sichuan pepper-picking robot which can identify the fruit in images from various growing environments. The research showed good accuracy for the recognition and segmentation of Sichuan peppers, which suggests that this method can provide technical support for the visual recognition of a pepper-picking robot in the field.

Funder

Sichuan Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3