Control Strategy of Grain Truck Following Operation Considering Variable Loads and Control Delay

Author:

Ma ZhikaiORCID,Chong Kun,Ma Shiwei,Fu Weiqiang,Yin Yanxin,Yu Helong,Zhao Chunjiang

Abstract

Considering the slow response and unstable velocity of agricultural machinery caused by soil resistance, actuator delay, environmental change, velocity fluctuation, and other internal and external factors under real working conditions, a kind of agricultural machinery following a control system that considers variable load and control delay was proposed. Taking distance-keeping, velocity-following, and acceleration-following as parameters, the controller model was deduced, and the influence of different values of model parameters on the driving stability of agricultural machinery was analyzed in detail. In addition, this paper describes a kind of agricultural machinery following a strategy that can realize the graded adjustment of vehicle distance with the dynamic increase in vehicle weight. Then, the following strategy, under the influence of velocity and quality, was simulated and verified using MATLAB/Simulink (MATLAB2016a, mathworks: Natick, Massachusetts, USA). When the crop harvester was at 1.5 m/s and the amplitude of velocity fluctuation was 0.3 m and 1.3 m, respectively, the grain truck could adjust its velocity to keep up with the crop harvester to complete the operation task. Simulation verification was carried out for the proposed graded adjustment of vehicle distance of agricultural machinery following strategy. The unit mass of the crops was set at 360 kg, and the vehicle distance changed at 18s to adapt to the graded adjustment of the vehicle distance following strategy. Finally, a real-vehicle validation test was carried out, and the results show that the grain truck velocity can keep up with the change of crop harvester velocity on the basis of maintaining the desired vehicle distance, the grain truck velocity can keep up with the change of crop harvester velocity on the road condition, which verifies the effectiveness and feasibility of the proposed method.

Funder

Key R&D Program of Hebei Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3