Research on the Optimization of Fresh Agricultural Products Trade Distribution Path Based on Genetic Algorithm

Author:

Sun JunORCID,Jiang TianhangORCID,Song Yufei,Guo Hao,Zhang YushiORCID

Abstract

This study, taking the R fresh agricultural products distribution center (R-FAPDC) as an example, constructs a multi-objective optimization model of a logistics distribution path with time window constraints, and uses a genetic algorithm to optimize the optimal trade distribution path of fresh agricultural products. By combining the genetic algorithm with the actual case to explore, this study aims to solve enterprises’ narrow distribution paths and promote the model’s application in similar enterprises with similar characteristics. The results reveal that: (1) The trade distribution path scheme optimized by the genetic algorithm can reduce the distribution cost of distribution centers and improve customer satisfaction. (2) The genetic algorithm can bring economic benefits and reduce transportation losses in trade for trade distribution centers with the same spatial and quality characteristics as R fresh agricultural products distribution centers. According to our study, fresh agricultural products distribution enterprises should emphasize the use of genetic algorithms in planning distribution paths, develop a highly adaptable planning system of trade distribution routes, strengthen organizational and operational management, and establish a standard system for high-quality logistics services to improve distribution efficiency and customer satisfaction.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Innovations in Agriculture;Agriculture;2023-08-26

2. Optimizing Fresh Agricultural Product Distribution Paths Under Demand Uncertainty;Journal of Global Information Management;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3