Production Capacity Evaluation of Farmland Using Long Time Series of Remote Sensing Images

Author:

Lu Mei,Gu XiaoheORCID,Sun Qian,Li Xu,Chen Tianen,Pan Yuchun

Abstract

Farmland is a crucial resource for the survival and evolution of humans. The accurate evaluation of farmland production capacity (FPC) is of great significance for planting structure optimization, the improvement of low-yield farmland and sustainable utilization. The objective of this study is to quantitatively evaluate the FPC at the county scale using time series remote sensing (RS) images. Taking winter wheat as a benchmark crop, the relations between annual yield and the Normalized Difference Vegetation Index (NDVI) were established by a multiple linear regression algorithm. The mean and standard deviations (SD) of the multi-year yield of winter wheat were used to evaluate FPC and its instability using the farmland parcels as the basic unit. The results show that the estimation model for annual winter wheat yield performed best in 2011. The R2 of the modeling sample was 0.93, and the RMSE of the testing sample was 368.1 kg/ha. The FPC grades in the south and north of the study area were relatively high with a good stability, while those in the center were low with poor stability. There was a certain correlation between FPC and soil organic matter (SOM), and the correlation coefficient was 0.525 (p < 0.01). In this study, taking the farmland parcel as a basic unit instead of a pixel, long time series of multi-source RS images with medium resolution were used to monitor the per unit yield of benchmark crops and then evaluate the FPC. This can provide a method for the rapid evaluation of FPC at the county scale.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3