Improved Cotton Seed Breakage Detection Based on YOLOv5s

Author:

Liu Yuanjie,Lv Zunchao,Hu Yingyue,Dai Fei,Zhang Hongzhou

Abstract

Convolutional neural networks have been widely used in nondestructive testing of agricultural products. Aiming at the problems of missing detection, false detection, and slow detection, a lightweight improved cottonseed damage detection method based on YOLOv5s is proposed. Firstly, the focus element of the YOLOv5s backbone network is replaced by Denseblock, simplifying the number of modules in the backbone network layer, reducing redundant information, and improving the feature extraction ability of the network. Secondly, the collaborative attention (CA) mechanism module is added after the SPP pooling layer, and a large target detection layer is reduced to guide the network to pay more attention to the location, channel, and dimension information of small targets. Thirdly, Ghostconv is used instead of the conventional convolution layer in the neck feature fusion layer to reduce the amount of floating-point calculation and speed up the reasoning speed of the model. The CIOU loss function is selected as the border regression loss function to improve the recall rate of the model. Lastly, the model was verified using an ablation experiment and compared with the YOLOv4, Yolov5s, and SSD-VGG16 network models. The accuracy, recall rate, and map value of the improved network model were 92.4%, 91.7%, and 98.1%, respectively, and the average recognition time of each image was 97 fps. The results show that the improved network can effectively solve the problem of missing detection, reduce false detection, and have better recognition performance. This method can provide technical support for real-time and accurate detection of damaged cottonseed in a cottonseed screening device.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3