Author:
Duan Yuxuan,Zheng Hongliang,Wen Haoran,Qu Di,Cui Jingnan,Li Chong,Wang Jingguo,Liu Hualong,Yang Luomiao,Jia Yan,Xin Wei,Li Shuangshuang,Zou Detang
Abstract
Rice salt tolerance at the germination stage directly affects the germination rate and seedling establishment of rice directly seeded in saline soils, which in turn affects yield. In this study, we determined the relative germination potential (RGP) and relative germination index (RGI) under 200 mM salt stress and control conditions using 295 japonica rice accessions. Statistical analysis showed extensive phenotypic variations under salt stress conditions. Twenty-one varieties with an RGP ≥ 80% and an RGI ≥ 80% were screened. Based on genotypic data including, 788,396 single-nucleotide polymorphisms (SNPs), 40 quantitative trait loci (QTL) were localized on rice chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, which were shown to be significantly associated with rice salt tolerance at the germination stage, including 20 for RGP and 20 for RGI, using genome-wide association analysis. Six QTL with ≥ 3 consecutive significant SNP loci and localized in the same LD interval were selected for further analysis. Four rice genes (LOC_Os01g04920, LOC_Os10g38350, LOC_Os10g38470, and LOC_Os10g38489) were selected as important candidates for salt tolerance based on haplotype analysis and functional annotation. The findings could facilitate the development of valuable rice varieties for direct seeding in salinized soil and improve japonica rice salt tolerance at the germination stage through molecular breeding.
Funder
National Natural Science Foundation of China
“Academic Backbone” Project of Northeast Agricultural University
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献