Research on the End Effector and Optimal Motion Control Strategy for a Plug Seedling Transplanting Parallel Robot

Author:

Zhao Xiong,Cheng Di,Dong Wenxun,Ma Xingxiao,Xiong Yongsen,Tong Junhua

Abstract

Due to the phenomenon of holes and inferior seedlings in trays, it is necessary to remove and replenish unqualified seedlings. The traditional operation is labor-intensive, and the degree of mechanization is low. This paper took broccoli seedlings as the research object and developed an image recognition system suitable for seedling health recognition and pose judgement, researched and designed a plug-in end effector that reduces leaf damage, and conducted orthogonal tests to obtain a substrate parameter combination containing the moisture content, seedling age, and transplanting acceleration suitable for culling operations. A parallel robot kinematics and dynamics model was built. The fifth degree B-spline curve was used to construct the joint space motion curve for seven nodes, and the motor speed, torque, and end-effector acceleration were used to construct the joint space motion curves. The end-effector acceleration was the constraint condition to plan the optimal trajectory of the joint space in time, and the optimal time was obtained using the artificial fish swarm–particle swarm hybrid optimization algorithm. A single operation time was greatly reduced; the whole machine was systematically built; the average time of single-time seedling removal was measured; and the transplanting efficiency of the whole machine was high. In the seedling damage rate gap test, the leaf damage rate was low. This research provides a reference for the localized development of greenhouse high-speed and low-loss seedling removal equipment.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference31 articles.

1. Current Situation of Global Vegetable Industry and Research Progress of Vegetable Breeding Development Path in China;Xin;Mol. Plant Breed.,2022

2. Edge recognition and reduced transplantation loss of leafy vegetable seedlings with Intel RealsSense D415 depth camera

3. Development of a seedling pick-up device for vegetable transplanters;Choi;Trans. Am. Soc. Agric. Eng.,2002

4. Design of a traction double-row fully automatic transplanter for vegetable plug seedlings

5. Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3