Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes

Author:

Martin Adam R.ORCID,Mariani Rachel O.,Cathline Kimberley A.,Duncan Michael,Paroshy Nicholas J.ORCID,Robertson Gavin

Abstract

Intraspecific trait variation is a critical determinant of ecosystem processes, especially in agroecosystems where single species or genotypes exist in very high abundance. Yet to date, only a small number of studies have evaluated if, how, or why traits forming the Leaf Economics Spectrum (LES) vary within crops, despite such studies informing our understanding of: (1) the environmental factors that drive crop LES trait variation and (2) how domestication has altered LES traits in crops vs. wild plants. We assess intragenotype variation in LES traits in ‘Chardonnay’ (Vitis vinifera)—one of the world’s most commercially important crops—across a soil compaction gradient: one of the most prominent characteristics of agricultural soils that may drive crop trait variation. Our early evidence indicates that ‘Chardonnay’ traits covary along an intragenotype LES in patterns that are qualitatively similar to those observed among wild plants: resource-acquiring vines expressed a combination of high mass-based photosynthesis (Amass), mass-based dark respiration (Rmass), and leaf nitrogen concentrations (N), coupled with low leaf mass per area (LMA); the opposite set of trait values defined the resource-conserving end of the ‘Chardonnay’ LES. Traits reflecting resource acquisition strategies (Amass, Rmass, and leaf N) declined with greater bulk density, while traits related to investment in leaf construction costs (LMA) increased with greater bulk density. Our findings contribute to an understanding of the domestication syndrome in grapevines and also provide information relevant for quantifying trait-based crop responses to environmental change and gradients.

Funder

Natural Sciences and Engineering Research Council

University of Toronto Scarborough Clusters of Scholarly Prominence Program

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3