Pear Tree Growth Simulation and Soil Moisture Assessment Considering Pruning

Author:

Wang ChengkunORCID,Zhang Nannan,Li Mingzhe,Li LiORCID,Bai TiechengORCID

Abstract

Few studies deal with the application of crop growth models to fruit trees. This research focuses on simulating the growth process, yield and soil moisture assessment of pear trees, considering pruning with a modified WOrld FOod Studies (WOFOST) model. Field trials (eight pruning treatments) were conducted in pear orchards in Alaer and Awat in Xinjiang, China and data were measured to calibrate and evaluate the modified model. In two pear orchards, the simulated total dry weight of storage organs (TWSO) and leaf area index (LAI) were in good agreement with the field measurements of each pruning intensity treatment, indicating that the R2 values of TWSO ranged from 0.899 to 0.976, and the R2 values of LAI ranged from 0.849 to 0.924. The modified model also showed high accuracy, with a normalized root mean square error (NRMSE) ranging from 12.19% to 26.11% for TWSO, and the NRMSE values for LAI were less than 10%. The modified model also had a good simulation performance for the soil moisture (SM) under all eight pruning intensity treatments, showing good agreement (0.703 ≤ R2 ≤ 0.878) and low error (NRMSE ≤ 7.47%). The measured and simulated results of different pruning intensities showed that the highest yield of pear trees was achieved when the pruning intensity was about 20%, and the yield increased and then decreased with the increase in pruning intensity. In conclusion, the modified WOFOST model can better describe the effects of summer pruning on pear tree growth, yield and soil moisture than the unmodified model, providing a promising quantitative analysis method for the numerical simulation and soil moisture assessment of fruit tree growth.

Funder

Bintuan Science and Technology Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3