Effects of Symbiotic Fungi on Sugars and Soil Fertility and Structure-Mediated Changes in Plant Growth of Vicia villosa

Author:

He Wan-Xia,Wu Qiang-ShengORCID,Hashem Abeer,Abd_Allah Elsayed FathiORCID,Muthuramalingam PandiyanORCID,Al-Arjani Al-Bandari Fahad,Zou Ying-Ning

Abstract

Many terrestrial plants form reciprocal symbioses with beneficial fungi in roots; however, it is not clear whether Vicia villosa, an important forage and green manure crop, can co-exist with these fungi and how such symbiosis affects plant growth and soil properties. The aim of this study is to analyze the effects of inoculation with three arbuscular mycorrhizal fungi (AMF) such as Diversisporaspurca, Funneliformismosseae, and Rhizophagusintraradices and an endophytic fungus Serendipitaindica on plant growth, root morphology, chlorophyll and sugar levels, soil nutrients, and aggregate size distribution and stability in V. villosa plants. After 63 days of inoculation, the beneficial fungi colonized the roots with colonization rates of 12% to 92%, and also improved plant growth performance and root morphology to varying degrees, accompanied by the most significant promoted effects after R.intraradices inoculation. All AMF significantly raised chlorophylls a and b, carotenoids and total chlorophyll concentrations, along with a significant increase in leaf sucrose, which consequently formed a significantly higher accumulation of glucose and fructose in roots providing carbon sources for the symbionts. Root fungal colonization was significantly (p < 0.01) positively correlated with chlorophyll compositions, leaf sucrose, and root glucose. In addition, inoculation with symbiotic fungi appeared to trigger a significant decrease in soil Olsen-P and available K and a significant increase in NH4-N, NO3-N, and glomalin-related soil protein levels, plus a significant increase in the proportion of water-stable aggregates at the size of 0.5–4 mm as well as aggregate stability. This improvement in soil aggregates was significantly (p < 0.01) positively correlated with root fungal colonization rate and glomalin-related soil protein concentrations. The study concludes that symbiotic fungi, especially R. intraradices, improve the growth of V. villosa, which is associated with fungal modulation of sugars, soil fertility and root structural improvement.

Funder

Researchers Supporting Project Number, King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3