Effects of Flow Path Geometrical Parameters on the Hydraulic Performance of Variable Flow Emitters at the Conventional Water Supply Stage

Author:

Gao Ni,Mo Yan,Wang Jiandong,Yang Luhua,Gong Shihong

Abstract

We created a subsurface drip irrigation (SDI)-specific variable flow emitter (VFE) that switches working stages automatically based on the inlet pressure (H) to achieve a step change in the flow rate. At working stage I (H = 0.1 MPa), namely the conventional water supply stage, the VFE provided a normal flow rate (qI) of 1–2 L/h for crop irrigation. At working stage II (H > 0.1 MPa; exceeding the design pressure), VFE delivered a larger flow rate (qII). The larger qII facilitated water movement upward from the underground to the surface seedbed during the crop planting, thus ameliorating crop germination issues under SDI. We focused on the impacts of four structural parameters of the flow channel: tooth height (E), tooth spacing (B), tooth angle (A), and flow channel depth (D) on the qI and VFE-flow index (x) at working stage I. Computational fluid dynamic (CFD) simulations were conducted along with a physical laboratory test to develop VFE using computerized numerical control (CNC) technology (accuracy = 0.05 mm). Nine VFEs were designed using an L9(34) orthogonal test. The combination of tetrahedral meshing with a six-layer boundary layer and the realizable k–ε turbulence model was found suitable for CFD simulations. The standard root-mean-square error (nRMSE) of the measured and simulated qIs was a minimum of 7.4%. The four parameters influenced qIs as D > B > E > A, and the four factors influenced the xs as B > E > D > A. Based on the numerical simulation data, multiple linear regression models were constructed for the qIs and xs with four parameters when H = 0.1 MPa. Aiming for the minimum x, the optimal combination of the flow channel structural parameters corresponding to different qIs was determined by the ergodic optimization algorithm. When qI was 1.5 L/h, the optimal structural combinations were E = 1.2 mm, B = 1.8 mm, A = 42°, and D = 1 mm. The VFE with a qI of 1.5 L/h was created by CNC technology. The relative errors of the measured and predicted qIs using the regression model were −0.19–6.31%, and their nRMSE was 6.76%. Thus, optimizing the flow channel structural parameters based on a multiple linear regression model and the ergodic optimization algorithm is a highly precise theoretical base for VFE development.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3