A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data

Author:

Lin YinghaoORCID,Tian QingjiuORCID,Qiao Baojun,Wu Yu,Zuo Xianyu,Xie Yi,Lian Yang

Abstract

High-frequency imaging characteristics allow a geostationary satellite (GSS) to capture the diurnal variation in vegetation canopy reflectance spectra, which is of very important practical significance for monitoring vegetation via remote sensing (RS). However, the observation angle and solar angle of high-frequency GSS RS data usually differ, and the differences in bidirectional reflectance from the reflectance spectra of the vegetation canopy are significant, which makes it necessary to normalize angles for GSS RS data. The BRDF (Bidirectional Reflectance Distribution Function) prototype library is effective for the angle normalization of RS data. However, its spatiotemporal applicability and error propagation are currently unclear. To resolve this problem, we herein propose a synthetic angle normalization model (SANM) for RS vegetation canopy reflectance; this model exploits the GSS imaging characteristics, whereby each pixel has a fixed observation angle. The established model references a topographic correction method for vegetation canopies based on path-length correction, solar zenith angle normalization, and the Minnaert model. It also considers the characteristics of diurnal variations in vegetation canopy reflectance spectra by setting the time window. Experiments were carried out on the eight Geostationary Ocean Color Imager (GOCI) images obtained on 22 April 2015 to validate the performance of the proposed SANM. The results show that SANM significantly improves the phase-to-phase correlation of the GOCI band reflectance in the morning time window and retains the instability of vegetation canopy spectra in the noon time window. The SANM provides a preliminary solution for normalizing the angles for the GSS RS data and makes the quantitative comparison of spatiotemporal RS data possible.

Funder

Key R&D and Promotion Projects of Henan Province

China High-resolution Earth Observation System

Major Project of Science and Technology of Henan Province

National Natural Science Foundation of China

National Defense Basic Research Projects of China

National Basic Research Program of China

Kaifeng science and technology development plan

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3