Author:
Kirci Pinar,Ozturk Erdinc,Celik Yavuz
Abstract
Studies carried out in different parts of the world and in different climatic conditions have made it clear that it is very important to use smart technologies in solving the problems experienced in the field of agriculture globally and locally. Another important aim of the studies is to ensure that agricultural products are grown in smart greenhouse environments outside of arable lands. For this reason, growing agricultural products in greenhouses controlled by smart systems by creating suitable soil and climatic conditions and facilitating people’s access to these products has been an important research and application subject. In this paper, the topics of “Smart Agriculture” and “Smart Greenhouse” were worked on. Therefore, a prototype of a smart greenhouse was constructed. Then, it was programmed according to the decided climatic conditions. Consequently, the main aim of this study was to improve the project according to the collected data by the sensors. One of the most important aims of our study was to question the possibility of growing different plants in the same greenhouse. In this context, in our study, a flower and three different vegetables with close growing conditions were grown in the same greenhouse in the same environment. These plants were grown individually both in the smart greenhouse prototype and in the pots outdoors in a natural environment. The differences between the two environments and the differences in the development of the plants were examined and the necessary results were obtained based on the findings. Based on the results obtained, it has been discussed what can be done if the plants grown in the greenhouse, of which we have created a small-scale prototype, are grown in a large-scale smart greenhouse. According to the results obtained, the smart greenhouse made a positive difference in the development of begonia, tomato and pepper. Although, the cucumbers grew more in the pots. In the study, it was observed that the plants were healthier in the smart greenhouse. The cucumbers in the greenhouse grew to 132 mm, the peppers to 61 mm and the tomatoes to 70 mm. The cucumbers in the pot grew to 163 mm, the peppers to 37 mm and the tomatoes to 60 mm. This shows that the yield was positively affected in the smart greenhouse. According to the collected results, the smart greenhouse system saved approximately 16.5% of water compared to the pot. The fact that the system can work both manually and autonomously provides a great convenience for the person controlling the greenhouse.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference45 articles.
1. Arduino-Based Smart Irrigation Using Water Flow Sensor, Soil Moisture Sensor, Temperature Sensor and ESP8266 WiFi Module;Singh;Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference,2016
2. Automation and Monitoring of Greenhouse;Siddiqui;Proceedings of the International Conference on Information and Communication (ICICT),2017
3. IoT-based Shutter Movement Simulation for Smart Greenhouse using Fuzzy-Logic Control;Ameen;Proceedings of the IEEE 12th International Conference on Developments in eSystems Engineering (DeSE),2019
4. Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring
5. Sensor Systems for Greenhouse Microclimate Monitoring and Control: a Review
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献