Investigating Sentinel-1 and Sentinel-2 Data Efficiency in Studying the Temporal Behavior of Wheat Phenological Stages Using Google Earth Engine

Author:

Saad El Imanni Hajar,El Harti Abderrazak,Panimboza Jonathan

Abstract

Crop monitoring is critical for sustaining agriculture, preserving natural resources, and dealing with the effects of population growth and climate change. The Sentinel missions, Sentinel-1 and Sentinel-2, provide open imagery at a high spatial and temporal resolution. This research aimed (1) to evaluate the temporal profiles derived from Sentinel-1 and Sentinel-2 time series data in deducing the dates of the phenological stages of wheat from germination to the fully mature plant using the Google Earth Engine (GEE) JavaScript interface and (2) to assess the relationship between phenological stages and optical/ SAR remote sensing indices for developing an accurate phenology estimation model of wheat and extrapolate it to the regional scale. Firstly, the temporal profiles derived from Sentinel-1 and Sentinel-2 remote sensing indices were evaluated in terms of deducing the dates of the phenological stages of wheat. Secondly, the remote sensing indices were used to assess their relationship with phenological stages using the linear regression (LR) technique. Thirdly, the best performing optical and radar remote sensing indices were selected for phenological stage prediction. Fourthly, the spatial distribution of wheat in the TIP region was mapped by performing a Random Forest (RF) classification of the fusion of Sentinel-1 and Sentinel 2 images, with an overall accuracy of 95.02%. These results were used to characterize the growth of wheat on the TIP regional scale using the Temporal Normalized Phenology Index (TNPI) and the predicted models. The obtained results revealed that (1) the temporal profiles of the dense time series of Sentinel-1 and Sentinel-2 indices allowed the dates of the germination, tillering, jointing heading, maturity, and harvesting stages to be determined with the support of the crop calendar. (2) The TNPIincrease and TNPIdecrease revealed that the declining part of the NDVI profile from NDVIMax, to NDVIMin2 revealed higher TNPI values (from 0.58 to 1) than the rising part (from 0.08 to 0.58). (3) The most accurate models for predicting phenological stages were generated from the WDVI and VH–VV remote sensing indices, having an R2 equal to 0.70 from germination to jointing and an R2 equal to 0.84 from heading to maturity.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3