Impact of Arbuscular Mycorrhizal Fungi, Phosphate Solubilizing Bacteria and Selected Chemical Phosphorus Fertilizers on Growth and Productivity of Rice

Author:

Elekhtyar Nehal M.,Awad-Allah Mamdouh M. A.ORCID,Alshallash Khalid S.ORCID,Alatawi Aishah,Alshegaihi Rana M.,Alsalmi Reem A.

Abstract

Phosphorus is the second most significant macro nutrient in rice productivity. Phosphorus fixation in Egyptian soil makes it unavailable for rice to absorb. The goal of this study was to examine the effects of microbial and chemical sources of phosphorus fertilizers on the Egyptian Sakha 106 rice cultivar by applying different sources of phosphorus to increase the bioavailability of soil phosphorus for plants and to allow it to be fixed biologically to change it from an insoluble form to a soluble and available form for rice to absorb. So, in the 2019 and 2020 seasons, a field experiment was conducted at the experimental farm of Sakha Agricultural Research Station, Sakha, Kafr El-Sheikh, Egypt. The experiment was carried out using a Randomized Complete Block Design with four replications to determine the best phosphorus source for rice and soil among various treatments, which included 100% single super phosphate (SSP) basal application (P1), 75% single super phosphate (SSP) basal application (P2), P2 + phosphate-solubilizing bacteria (PSBs) top-dressing, P2 + arbuscular mycorrhizal fungi (AMFs) top-dressing P2 + phosphorus nanoparticles (PNPs) foliar spraying, P2 + phosphoric acid (PA) foliar spraying, P2 + (PSBs + AMFs) foliar spraying, P2 + (PSBs + PNPs) foliar spraying, P2 + (PSBs + PA) foliar spraying, P2 + (PNPs + PA) foliar spraying, P2 + (PSBs + PNPs + PA) foliar spraying and zero-phosphorus fertilizer. The results showed that the highest values were mostly obtained using the combination of 75% SSP basal application with the foliar spraying of PSBs, PNPs and PA, with substantial beneficial impacts on the leaf area index (3.706 and 3.527), dry matter accumulation (464.3 and 462.8 g m2), plant height (96.33 and 95.00 cm), phosphorus uptake in grain (24.3 and 24.49 Kg ha−1), phosphorus uptake in straw (17.7 and 17.0 Kg ha−1) and available phosphorus in the soil at harvest (21.75 and 21.70 ppm) in the 2019 and 2020 seasons, respectively; moreover, 75% SSP basal application with the foliar spraying of PSBs, PNPs and PA or 100% SSP basal application alone improved the number of panicles (506.3 or 521.1 and 521.9 or 547.1 m−2), filled grain weight (3.549 or 3.534 and 3.627 or 3.767 g panicle−1), the percentage of filled grain (96.19 or 96.47 and 95.43 or 96.24%), grain yield (9.353 or 9.221 and 9.311 or 9.148 t ha−1) and straw yield (11.51 or 11.46 and 11.82 or 11.69 t ha−1) in the 2019 and 2020 seasons, respectively. Chemical P fertilizers combined with the foliar spraying of PSBs, PNPs and PA obtained the highest crop productivity and improved most of the examined characteristics without any significant changes with respect to chemical P application alone in some other characteristics, followed by 75% SSP + top-dressing with PSBs + AMFs. The treatment that included the combination of 75% SSP basal application and the foliar spraying of PSBs +PNPs +PA is recommended, as it might be utilized to boost rice yield by solubilizing P in soil and increasing the absorption efficiency. In addition, it reduces chemical P fertilizers by 25%, which would guarantee a cleaner environment and soil conservation.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference88 articles.

1. Rice Research and Training Center (National Rice Research Program): Proceedings of the Rice Workshop, Annual Report, 2020.

2. Effect of organic ligands on biological availability of inorganic phosphorus in soils;Feng;Pedosphere,2004

3. Characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts;Furihata;Plant Cell Physiol.,1992

4. Metabolic adaptations of plant respiration to nutritional phosphate deprivation;Theodorou;Plant Physiol.,1993

5. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms;Richardson;Plant Soil,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3