Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation

Author:

Zhang ZeminORCID,Zhang Zhanyu,Feng GenxiangORCID,Lu Peirong,Huang Mingyi,Zhao Xinyu

Abstract

The freshwater deficit is the major constraint to winter wheat production. Saline water irrigation could alleviate wheat water stress while increasing the risk of soil salinization, which would result in wheat yield reduction due to additional salt stress. The objective of the present study is to explore the effect of a straw-returning mode to promote winter wheat production under saline water irrigation. A field experiment was conducted during the winter wheat growing seasons of 2017–2018 and 2018–2019. Four returning modes were set, based on an equivalent carbon input: straw mulching (SM), biochar amendment (BA), straw mulching combined with biochar amendment (SM+BA), and the control without straw-returning (CK), along with three salinity levels of irrigation water: 0.47 dS m−1 (I0, freshwater), 3.25 dS m−1 (I1), and 6.75 dS m−1 (I2). Saline water irrigation alone triggered soil salt accumulation and reduced the wheat grain yield by 9.43––18.19%. Returning straw to fields increased soil organic carbon content by 16.41––52.21% and decreased soil bulk density by 0.69––1.46%. The highest increase in wheat grain yield (16.60––21.80%) was always obtained when using treatment SM+BA, due to the increased soil moisture content (3.15––12.31%) and lower salt levels (24.79––44.29%) compared to CK. The results of the present study established that SM+BA provided better soil water–salt conditions and nutrient environment for winter wheat growth than a single treatment. Thus, the combined application of SM and BA was shown to be a proper mitigating strategy to cope with the adverse effects of saline irrigation on winter wheat production and to promote the sustainable use of saline water irrigation.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3