Mineralization of Farm Manures and Slurries for Successive Release of Carbon and Nitrogen in Incubated Soils Varying in Moisture Status under Controlled Laboratory Conditions

Author:

Islam Mohammad RafiqulORCID,Bilkis Sultana,Hoque Tahsina Sharmin,Uddin ShihabORCID,Jahiruddin Mohammad,Rahman Mohammad Mazibur,Rahman Mohammad MahmudurORCID,Alhomrani Majid,Gaber AhmedORCID,Hossain Mohammad AnwarORCID

Abstract

Having up-to-date knowledge on the mineralization of organic materials and release of nutrients is of paramount significance to ensure crops’ nutrient demands, increase nutrient use efficiency and ensure the right fertilizer application at the right time. This study seeks to evaluate the mineralization patterns of various manures viz. cowdung (CD), cowdung slurry (CDSL), trichocompost (TC), vermicompost (VC), poultry manure (PM), poultry manure slurry (PMSL), and mungbean residues (MR). The objective being to establish their efficiency in releasing nutrients under aerobic (field capacity) and anaerobic (waterlogging) conditions. The incubation experiment was designed using a Completely Randomized Design (CRD) that took into account three variables: Manures, soil moisture, and incubation period. The mineralization of carbon (C) and nitrogen (N) ranged from 11.2 to 100.1% higher under aerobic conditions rather than anaerobic ones. The first-order kinetic model was used to mineralize both elements. C mineralization was 45.8 to 498.1% higher in an amount from MR under both moisture conditions. For N release, MR and PM exerted maximum amounts in anaerobic and aerobic scenarios, respectively. However, the rate of C and N mineralization was faster in TC compared to other manures in both moisture conditions. Although TC was 1.4 to 37.7% more efficient in terms of rapidity of mineralization, MR and PM performed better concerning the quantity of nutrient release and soil fertility improvement. PM had 22–24% higher N mineralization potential than PMSL while CDSL had 46–56% higher N mineralization potential than CD. C and N mineralization in soil was greater under aerobic conditions compared to what occurred in the anaerobic context. Depending on mineralization potential, the proper type and amount of manure should be added to soil to increase crops’ nutrient use efficiency, which in turn should lead to better crop production.

Funder

Taif University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference56 articles.

1. National strategy and plan for use of soil nutrient balance in Bangladesh;Rijpma;Consult. Rep. SFFP Khamarbari Dhaka,2004

2. Soil fertility history, present status and future scenario in Bangladesh;Islam;Bangladesh J. Agric. Environ.,2008

3. Effect of Cattle Slurry on Growth, Biomass Yield and Chemical Composition of Maize Fodder

4. Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes;Wani,1995

5. Temporal changes of selected chemical properties in three manure – Amended soils of Hawaii

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3