Assessing the Long-Term Impact of Traditional Agriculture and the Mid-Term Impact of Intensification in Face of Local Climatic Changes

Author:

Telo da Gama JoséORCID,Loures LuisORCID,Lopez-Piñeiro AntónioORCID,Quintino DerickORCID,Ferreira PauloORCID,Nunes José RatoORCID

Abstract

In the Mediterranean basin, edaphic salinization, sodification and alkalinization related to anthropic pressures and climatic changes may hinder the ecosystem sustainability. It is pertinent to study the mid and long-term variability of these soil characteristics in face off the macro agricultural system in use (i.e., irrigation or rain-fed). Four irrigated soils from the Caia Irrigation Perimeter (Portugal), Fluvisols, Luvisols, Calcisols and Cambisols were analysed in the mid-term, from 2002 to 2012, for its available Ca2+, Mg2+, K+ and Na+ content. Overall, Ca2+, K+ and Na+ significantly increased during the period of this study by 25%, 8% and 7%, respectively. Soil organic matter (SOM) and pH for the irrigated soils in the area were already assessed in previous studies with the overall SOM remaining constant (p ≥ 0.05) and pH increasing (p < 0.01) by 5%. We provide the predictive maps for Na+ and the CROSS predictive & HotSpot evolution map from 2002 to 2012. Rain-fed soils were analysed in the long-term, from 1965 to 2012, for their SOM, pH and non-acid cations (Ca2+, Mg2+, K+ and Na+) content. While SOM, pH and the exchangeable Ca2+, Mg2+ and K+ significantly increased (p < 0.01) by 23%, 8%, 60%, 21% and 193%, respectively, exchangeable Na+ significantly decreased (p < 0.01) by 50%. These results may be related to the local climate changes as, according to the Thornthwaite classification, it went from sub-humid with great water excess (C1B2s2b4) in the climate normal 1951/1980 to sub-humid with moderate water excess (C1B2sb4) in 1981/2010 to semi-arid with little to none water excess (DB2db4) in 1991/2020. The irrigated areas in this Mediterranean region are slowly departing from sustainable goals of soil conservation and better edaphic management and conservation practices, that address the registered climatic changes in the area, could be adopted.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3