Pan-Genome-Wide Identification and Transcriptome-Wide Analysis of DREB Genes That Respond to Biotic and Abiotic Stresses in Cucumber

Author:

Wang Can,Han Jing,Wang Ting,Chen Chunhua,Liu Junyi,Xu Zhixuan,Zhang Qingxia,Wang Lina,Ren ZhonghaiORCID

Abstract

The production of cucumber (Cucumis sativus L.) is often harmed by biotic and abiotic stresses. Although the dehydration-responsive element-binding (DREB) transcription factors, playing vital roles in stress responses, have been characterized in several plant species, little is known about the pan-genome characteristics of DREB genes and their expression patterns under different stresses in cucumber. In this study, we identified 55 CsDREBs from the cucumber pan-genomes of 13 accessions, but only four accessions had all the genes. Most of the CsDREB proteins had sequence length and/or amino acid variations, and only four of them had no variation among different accessions. Using the 55 CsDREBs from ‘9930’, we analyzed their gene structures, conserved domains, phylogenetic relationships, gene promoter’s cis-elements and syntenic relationships, and classified them into six groups. Expression pattern analysis revealed that eight CsDREBs showed constitutive expression (FPKM > 1 in all samples), and different CsDREBs showed specifically high expression in root, stem, leaf, tendril, male-flower, female flower, and ovary, respectively, suggesting that these genes might be important for morphogenesis and development in cucumber. Additionally, a total of 31, 22, 30 and nine CsDREBs were differentially expressed in responding to the treatments of heat, NaCl and/or silicon, power mildew and downy mildew, respectively. Interestingly, CsDREB33 could respond to all the tested stresses. Our results provide a reference and basis for further investigation of the function and mechanism of the DREB genes for resistance breeding in cucumber.

Funder

National Natural Science Foundation of China

the Shandong “Double Tops” Program

the ‘Taishan Scholar’ Foundation of the People’s Government of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3