WG-3D: A Low-Cost Platform for High-Throughput Acquisition of 3D Information on Wheat Grain

Author:

Wu Wei,Zhao Yuanyuan,Wang Hui,Yang Tianle,Hu Yanan,Zhong Xiaochun,Liu Tao,Sun ChengmingORCID,Sun Tan,Liu Shengping

Abstract

The three-dimensional (3D) morphological information of wheat grains is an important parameter for discriminating seed health, wheat yield, and wheat quality. High-throughput acquisition of 3D indicators of wheat grains is of great importance for wheat cultivation management, genetic breeding, and economic value. Currently, the 3D morphology of wheat grains still relies on manual investigation, which is subjective, inefficient, and poorly reproducible. The existing 3D acquisition equipment is complicated to operate and expensive, which cannot meet the requirements of high-throughput phenotype acquisition. In this paper, an automatic, economical, and efficient method for the 3D morphometry of wheat grain is proposed. A line laser binocular camera was used to obtain high-quality point-cloud data. A wheat grain 3D model was constructed by point-cloud segmentation, finding, clustering, projection, and reconstruction. Based on this, 3D morphological indicators of wheat grains were calculated. The results show that the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the length were 0.2256 mm and 2.60%, the width, 0.2154 mm and 5.83%, the thickness, 0.2119 mm and 5.81%, and the volume, 1.7740 mm3 and 4.31%. The scanning time was around 12 s and the data processing time was around 3.18 s under a scanning speed of 25 mm/s. This method can achieve the high-throughput acquisition of the 3D information of wheat grains, and it provides a reference for in-depth study of the 3D morphological indicators of wheat and other grains.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu, China

National Natural Science Foundation of China

Key Research and Development Program (Modern Agriculture) of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3