Differentiation of Yeast-Inoculated and Uninoculated Tomatoes Using Fluorescence Spectroscopy Combined with Machine Learning

Author:

Ropelewska EwaORCID,Slavova VanyaORCID,Sabanci KadirORCID,Aslan Muhammet FatihORCID,Masheva Veselina,Petkova Mariana

Abstract

Artificial-intelligence-based analysis methods can provide objective and accurate results. This study aimed to evaluate the performance of machine learning algorithms to classify yeast-inoculated and uninoculated tomato samples using fluorescent spectroscopic data. For this purpose, three different tomato types were used: ‘local dwarf’, ‘Picador’, and ‘Ideal’. Discrimination analysis was applied with six different machine learning (ML) algorithms. Confusion matrices, average accuracies, F-Measure, Precision, ROC (receiver operating characteristic) Area, MCC (Matthews Correlation Coefficient), and precision-recall area values obtained as a result of the application of different ML algorithms were compared. Based on the fluorescence spectroscopic data, the application of six ML algorithms showed that the first two tomato types were classified with 100% accuracy and the last type was classified with 95% accuracy. The results of the study show that the fluorescence spectroscopy data are strongly representative of tomato species. ML methods fed with these data provide high-performance discrimination.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3