The Potential of Novel Gene Editing-Based Approaches in Forages and Rumen Archaea for Reducing Livestock Methane Emissions

Author:

Subedi UdayaORCID,Kader Kazi,Jayawardhane Kethmi N.,Poudel HariORCID,Chen Guanqun,Acharya Surya,Camargo Luiz S. A.,Bittencourt Daniela Matias de C.ORCID,Singer Stacy D.

Abstract

Rising emissions of anthropogenic greenhouse gases such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are a key driver of climate change, which is predicted to have myriad detrimental consequences in coming years if not kept in check. Given the potency of CH4 in terms of trapping heat in the atmosphere in the short term, as well as the fact that ruminant production currently contributes approximately 30% of anthropogenic emissions, there is an impetus to substantially decrease the generation of ruminant-derived CH4. While various strategies are being assessed in this context, a multi-faceted approach is likely required to achieve significant reductions. Feed supplementation is one strategy that has shown promise in this field by attenuating methanogenesis in rumen archaea; however, this can be costly and sometimes impractical. In this review, we examine and discuss the prospect of directly modulating forages and/or rumen archaea themselves in a manner that would reduce methanogenesis using CRISPR/Cas-mediated gene editing platforms. Such an approach could provide a valuable alternative to supplementation and has the potential to contribute to the sustainability of agriculture, as well as the mitigation of climate change, in the future.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3