Brachiaria humidicola Cultivation Enhances Soil Nitrous Oxide Emissions from Tropical Grassland by Promoting the Denitrification Potential: A 15N Tracing Study

Author:

Xie Lu,Liu Deyan,Müller Christoph,Jansen-Willems Anne,Chen Zengming,Niu Yuhui,Zaman Mohammad,Meng Lei,Ding WeixinORCID

Abstract

Biological nitrification inhibition (BNI) in the tropical grass Brachiaria humidicola could reduce net nitrification rates and nitrous oxide (N2O) emissions in soil. To determine the effect on gross nitrogen (N) transformation processes and N2O emissions, an incubation experiment was carried out using 15N tracing of soil samples collected following 2 years of cultivation with high-BNI Brachiaria and native non-BNI grass Eremochloa ophiuroide. Brachiaria enhanced the soil ammonium (NH4+) supply by increasing gross mineralization of recalcitrant organic N and the net release of soil-adsorbed NH4+, while reducing the NH4+ immobilization rate. Compared with Eremochloa, Brachiaria decreased soil gross nitrification by 37.5% and N2O production via autotrophic nitrification by 14.7%. In contrast, Brachiaria cultivation significantly increased soil N2O emissions from 90.42 μg N2O-N kg−1 under Eremochloa cultivation to 144.31 μg N2O-N kg−1 during the 16-day incubation (p < 0.05). This was primarily due to a 59.6% increase in N2O production during denitrification via enhanced soil organic C, notably labile organic C, which exceeded the mitigated N2O production rate during nitrification. The contribution of denitrification to emitted N2O also increased from 9.7% under Eremochloa cultivation to 47.1% in the Brachiaria soil. These findings confirmed that Brachiaria reduces soil gross nitrification and N2O production via autotrophic nitrification while efficiently stimulating denitrification, thereby increasing soil N2O emissions.

Funder

National Natural Science Foundation of China

International Partnership Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3