Research on Grape-Planting Structure Perception Method Based on Unmanned Aerial Vehicle Multispectral Images in the Field

Author:

Qu Aili,Yan Zhipeng,Wei Haiyan,Ma Liefei,Gu Ruipeng,Li Qianfeng,Zhang Weiwei,Wang Yutan

Abstract

In order to accurately obtain the distribution of large-field grape-planting sites and their planting information in complex environments, the unmanned aerial vehicle (UAV) multispectral image semantic segmentation model based on improved DeepLabV3+ is used to solve the problem that large-field grapes in complex environments are affected by factors such as scattered planting sites and complex background environment of planting sites, which makes the identification of planting areas less accurate and more difficult to manage. In this paper, firstly, the standard deviation (SD) and interband correlation of UAV multispectral images were calculated to obtain the best band combinations for large-field grape images, and five preferred texture features and two preferred vegetation indices were screened using color space transformation and grayscale coevolution matrix. Then, supervised classification methods, such as maximum likelihood (ML), random forest (RF), and support vector machine (SVM), unsupervised classification methods, such as the Iterative Self-organizing Data Analysis Techniques Algorithm (ISO DATA) model and an improved DeepLabV3+ model, are used to evaluate the accuracy of each model in combination with the field visual translation results to obtain the best classification model. Finally, the effectiveness of the classification features on the best model is verified. The results showed that among the four machine learning methods, SVM obtained the best overall classification accuracy of the model; the DeepLabV3+ deep learning scheme based on spectral information + texture + vegetation index + digital surface model (DSM) obtained the best accuracy of overall accuracy (OA) and frequency weight intersection over union (FW-IOU) of 87.48% and 83.23%, respectively, and the grape plantation area relative error of extraction was 1.9%. This collection scheme provides a research basis for accurate interpretation of the planting structure of large-field grapes.

Funder

Ningxia Key research and development program

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3