Abstract
Reusing organic waste as fertilizer is one method to reduce the use of mineral fertilizers and minimize waste disposal in landfills. Regulations have been enacted for the processing of organic waste and for recycling end products, but the humic content of organic fertilizers has been neglected. We studied seven composts with different organic input materials and technologies. Humic substances (HSs) were detected in all composts. The total organic carbon in the HSs constituted 8.7 ± 0.1% (SD)–27.0 ± 0.2% of the compost dry matter. Spectral differences between the studied samples in FTIR spectroscopy could be observed at 1700–1000 cm−1, indicating differences in compost precursor material. The EEM peak, associated with humic acids (HAs), was high in composts containing animal by-products (e.g., fish waste, horse manure, and kitchen biowaste). Kitchen biowaste, also when processed by Hermetia illucens larvae and vermicompost, exhibited slower organic material transformation with low humic acid/fulvic acid ratios (<1.60). The results show the importance of source material origin and amendments, which influence the composting process and final products. Our study emphasizes the role of humic substances in the comprehensive evaluation of composts. To maximize the added value of composts, marketing strategies should consider determining the share of humic substances besides the content of organic matter and nutrients.
Funder
Estonian University of Life Sciences
European Regional Development Fund
Post-doctoral research project
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference69 articles.
1. Kaza, S., Yao, L., Bhada-Tata, P., and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, World Bank Publications.
2. Interreg Europe (2021). The Biowaste Management Challenge. A Policy Brief from the Policy Learning Platform on Environment and Resource Efficiency 2021, Interreg Europe.
3. Ministry of the Environment Estonian National Waste Management Plan (2014). Riigi Jäätmekava 2014–2020 (Pikendatud Kuni 2022 Lõpuni), Ministry of the Environment Estonian.
4. Municipal Solid Waste Management and Landfilling Technologies: A Review;Environ. Chem. Lett.,2021
5. European Parliament Directive (EU) (2018). 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the Landfill of Waste (Text with EEA Relevance) 2018, European Parliament Directive (EU).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献